Thrasher Research Fund - Medical research grants to improve the lives of children

Project Details

Early Career

Status: Funded - Closed

The role of arginase in neuroinflammation after neonatal hypoxic-ischemic brain injury

Jana Mike, MD, PhD

Summary

Background Arginases (ARG isoforms, ARG-1/ARG-2) are key regulatory enzymes of inflammation and tissue repair; however, their role after neonatal brain hypoxia (H) and hypoxia–ischemia (HI) remains unknown. Methods C57BL/6 mice subjected to the Vannucci procedure on postnatal day (P9) were sacrificed at different timepoints. The degree of brain damage was assessed histologically. ARG spatiotemporal localization was determined via immunohistochemistry. ARG expression was measured by Western blot and activity spectrophotometrically. Results ARG isoform expression increased during neurodevelopment (P9–P17) in the cortex and hippocampus. This was suppressed with H and HI only in the hippocampus. In the cortex, both isoforms increased with H alone and only ARG-2 increased with HI at 3 days. ARG activity during neurodevelopment remained unchanged, but increased at 1 day with H and not HI. ARG-1 localized with microglia at the injury site as early as 4 h after injury, while ARG-2 localized with neurons. Conclusions ARG isoform expression increases with age from P9 to P17, but is suppressed by injury specifically in the hippocampus and not in the cortex. Both levels and activity of ARG isoforms increase with H, while ARG-1 immunolabelling is upregulated in the HI cortex. Evidently, ARG isoforms in the brain differ in spatiotemporal localization, expression, and activity during neurodevelopment and after injury.. Website Link: http://neurology2.ucsf.edu/neoneur/

Publications: